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We apply the minimax (the guarantee) approach to the optimal control problems 
for plants with incomplete information. We assume that the location of the phase 

vector is known to within a certain set to which it belongs; the system’s position 

is updated by measurements during the motion. Using the dynamic programing 

method we investigate a way of contructing the control as a function of measu- 
rement results and of time. Similar problems were analyzed in [l - 31. 

1. Dircrete CLBO. A discrete system is described by the equations 

%+l= F(% uk, tk) (k = 0, i,2, . . . ( N), xk,FE:E” 

t,<tl<...<tN<tN+l=T 

w 

Here the controls t&k are m-dimensional vectors, uk E Em, or are m-dimensional 
vector-valued functions defined on the interval [tkr tr+l). ‘The components of vector 

P are, respectively, functions (or functionals) depending on UR. Furthermore, uk E 
E uk c_I Em, where Uk is a closed bounded set. On the trajectories of system (1.1) 
we define the functional nl 

J = r: Rk +k) + RN+1 (xN+l) 
(1.2) 

k=O 

Here RJ, (k = 0, 1, . . . . N + 1) are continuous functions (or functionals) of their 
arguments. 

At the initial ¶nstant t, the vector x0 is specified imprecisely; we know only that 

to E Bo, where BO is a closed set, B. c En. Having substituted certain controls 

UA (k = 0, 1, . . . . N) into (1. l), we can obtain a set of possible positions of the 
phase vector at the instant tk (k = 1, 2, . . ..N $- l).We assume that the set of 

possible positions is updated at each step by means of measurements. Let us describe 
these measurements. Suppose that the set B k of possible positions is known at an instant 

th ,i.e., the set such that ok E Bk. It is obvious that at the next instant X~+I E 

E &' (B k, uk, tk). We have here adopted the notation 

F (Bk, uk, tk) = (x E En: x = F (Y, uk, tk)t Y E Bk). 

Let us assume that measurement made at the instant tk+l yields a certain Set Dk+l 

such that ~+l cSD~+~. Therefore, the vector xk+1 belongs also to the intersection 

Dk+l I7 F (BA, UR, tt,) = Bk+l. The measurement results should satisfy the follow- 

ing consistency condition: the intersection Bk+l (k = 0, 1, . . ., N) is not empty. 
By definition, Do = B,. For each instant we can define a certain class of sets{Dk) 
whose elements may appear at D k (the class measurement outcomes). We take it ‘that 

the class {D J,} consists of all sets obtained by means of shifts in the space E” from 
some arbitrary closed convex set. For example, we can take the class {D k} as consisting 
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of n-dimensional spheres with center at some point z E 
E Enand with a specified diameter dk > 0; the choice 
of the vector z also determines the actual measurement 

outcome D k (Fig. 1). 
We assume that the controls ok are chosen after the set 

bk (respectively, also Bk) have become known. We 

pose the following problem: knowing the measurement 
possibilities, i.e. , the classes {Dk} @=I, 2, . . . . N+, 
+ 1), and the initial set B,, find admissible controls 

Uh (Bp,) (k =.O, 1, . . . . N) as functions of the measure- 
ment results, which ensure the minimal guaranteed value 

Fig. 1. of functional (1.2) on the trajectories of system (1.1). Let 

us extend the problem posed and seek controls furnishing 

a minimal guaranteed value to the functional 

Ji = 5 RI, (uk) + &+I @N+I) (i = 0,1, . . . , N) (1.3) 

k=i 

for a fixed i , on the trajectories of system (1.1) for i ,( k < N.The set Bi of 
possible positions (xi E Bi) is given at the instant ti . 

We define the Bellman function by the formula 

S (B,, ti) _ min,, maxDi+l min,i+l maxn z+2 . * * 

. . . min u,v maxD,v+l max,N+lJ~ (i = 0,1,. . . ( N) (f-4) 

The function S (Bi, ti) equals the minimal value which can be guaranteed for function- 
al Ji if at the instant ti we have the set Bi. We assume that all the extrema in (1.4) 

are reachable. The operation distribution order in (1.4) is chosen in correspondence with 
the order of information inflow and of control information. The minimum with respect 
to uk ranges over the set uh. The rightmost maximum in (1.4) is computed with 
respect to the set BN+~= DN+~ n F (B NY UN, tlv) , the remaining maxima range 

over L) k E (D k}, satisfying the consistency condition. Later on we shall need one pro- 

perty of the function S (Bi, ti), which is easily verifiable with the aid of (1.4), 

S (Bi, ti) s S (Bi’, ti), if Bi E Bi’ G-5) 

We transform (1.4). with due regard to (1.3), 

S (B,, tt) = minUi maxDi+r Ri (ui) + minUi+t maxDi+s . . . 

* * , minuN maxDN+l maxXN+l [ k~+l fhc @k) + RN+, (-+I) ,] 

Note that the second term within the brackets, in accordance with (1.4). equals 
S (Bi+l, ti+l), where Bi+l = Di+l n F (Bi, Uiy ti). Consequently, the function 
S satisfies the recurrence relation 

S (Biy ti) = minUi maxDi+r [S (Di+r II F (Bi, Uir ti), ti+r) + Ri (Ui)I (1.6) 

ui E ut, Di+l E {Di+l>, Di+l fl F (Biv ui, ti) # @ (i = 0, 1, . . ( N) 
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We further set 
8 (&+I, 2’) = max R 

XN+IEBN+~ N+l (sNtl) 

Knowing the function $ (J34, ii) for all regions Bi capable of being realized at the 
instant ti (i = 0, 1, . . . . N), we can obtain the control ui (Bi) by carrying out the 

operations in (1.6). This problem is highly complicated for the case of arbitrary regions. 

We make some simplifying assumptions: 
I). Equations (1.1) are linear in xk : F (xk, UA, tk) = AAzk i- by (u&where 

A k is a square ?Z X n matrix, bR E &‘n. 

2 

2). The set B,, is a segment in 8,‘“. We denote this segment 1 (a?, $9, where x1, 

+?Z E” are the endpoints of the segment. 

From these assumptions it follows that all regions& (i = 1, 2, . . . . N + l)are segments, 
B{ 7: I (Xi’, y”).Thus the structure of sets ~~ is simplified and they are specified by 

2n- parameters (the coordinates of the vectors si’+ xi’). We can now treat the function 

S as a function of 2n +- 1 variables, S (x$, z$; tf). It is evident that S (~~1, z?, ti) = 

= S (ri2, z$, ti). Note that assumption (2) signifies that the initial error with respect 

to one linear combination of phase coordinates is most significant. 

Assumptions (1) and (2) allow us to simplify (1.6) essentially, On the unit sphere we 
define the function 

The absolute value sign denotes the length of the vectors in E”. The points &I, X:+1 
are the points of intersection of an arbitrary straight line directed along the basis vector 

e with the boundary of set Di+, (Fig, 2). Let us assume, for example, that the scalar 

2’ 
product wk = (ck, xk) -/- Ak, is measured, where the error 

%+f 1 A f< i < vk, and. c k and V~ are given quantities, v k > 0. 

Then. the sets Dk = (X GZ En:wk - 1 Ah 1 sg (ck, 4 G 
2 

=i+l 

b 

,!I~+, Swfr -t- I A/, I} are the sets Dk C? (DA} . The function 

d(e, tk) is easily computed in this case and equals 2v~ 1 (Ck, e)] 

e 1-l. The function d (e, t-k) introduced characterizes the measure- 

ment possibilities, 

Xi+, 
Suppose that the segment I($‘, xi”) is known at the instant tj. 

I/ 
;Ci+t 

At the next instant ti+l r in accordance with assumption (1). it is 

once again mapped onto a certain segment 1 (&.l, x?;s). If at the 

Fig. 2. ith step it turns out that I& - &i 1 <d (ei+r, &+I), where 
ei+l = (xi”;, - z&) [ &, - &, /-I, then there exists a set Di+rE 

6Z {D& such that I (&i, &$ cr: Di+* .R ecalling property (1.5) of the function 8, 

we can note that the maximum in (1.6) is reached, for example, on this set Bi+r. In 
this case, in (1.6) we can omit the maximization with respect to Di+l and rewrite 

this relation as 
s f%l, zizt ti) = pi; [S @;;I, xX1, &+I) + 4 (ui)l V.7) 

i i 

This case signifies that the measurement is ineffective at the instant ti+r i.e., does 
not guarantee an increase in information on the system’s position. 
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We consider the other case, when 1 s& - 
effectiveb Let 2t+I, 

xii1 I> d (%+I, &I) (the measurement is 

the set Di+i. 
zf+t be the points of intersection of the segment I(&,, &) with 

From the same property (1.5) of function S it follows that the maximiz- 
ation in (1.6) need be carried out only with respect to those &+r E {&l] for which 

1+ - 4+1 I = d k%+l, &+I>, d+11 &I E 1 (&l &I). For such sets Di+r the vectors 
x~+~, 51;t+1 can be represented as (Fig. 2) 

x:+1 = Z;;r + CI (Lz$, - Xij;J, %1 = 5;;t + CL’ (S$, - l;;;,> (4.8) 

CC’ = a + d (ei+l, ti+J 1 zfil - xii, l-l9 %+I = k& - &I I sfL1 - $il 1-l 

where d is . real parameter. From the condition I (zi+r, S+J c 1 (nil;,, ziz;i) we obtain 
that LT should lie within the limits 

O<a<1 - d ha, 4+1) I $il - $l 1-l (1-3 

As follows from the description of the classes (D k} a possible measurement outcome 
corresponds to each a from the interval indicated. Thus, a one-parameter family has 
been picked out from the worst measurement outcomes, and the maximum with respect 

to D i+l in (1.6) can be replaced by a maximum with respect to cr. Indeed, having noted 
that in the case being considered 

S (I)i+l n P (B*, nit tt) &+S = s (5t+1’ 5&l’ ‘i+l) 

we can write (1.6) in the form 

S (Xi13 zi2, ti) = %yisi maxa 11.9 (c++,, x&T $+I> + Ri l”i)I 

i i 

(1.10) 

where o varies in the interval (1.9) and the vectors &+I, $+I are chosen in form 
(1.8). Equation (1.10) simplifies under the change of variables 

zi = l/s (Xi’ + Q), 7Ji = Xi2 - 2Q (1.11) 

Now a measurement outcome yields a pair of vectors ai, yi. The phase vector pi 
can take the values 52 = Zi + fiyi, Ifl ) < 1/2b If the vectors Zi, & are known at 

instant t, then, as above, the primes distinguish the vectors into which zi, yi, are taken 

in accordance with (1.11) and assumption (1). 

%+1 = A& + bi (z+), t&1 = A& (i = 0.1. . . , N) 

ei+l = Y& 1 Y;,~ f-’ = &A 1 &YI I-’ (1.12) 

The last relation in (1.12) follows from (1.8), (1.11). The vectors zi+t, Yi+t are found 
as a result of measurement, i, e, , by the intersection of the segment I (zi,, - r/s Yi+ll 
$+, -j- ‘is j/i+i) with some set &+lE (Di+i>. We take it that the Bellman function de- 
pends upon the arguments zi, $i, ti, and for it we retain the previous notation S (zi, 
Yi, ti). It is not difficult to see (relation (1.7)) that for the instants ti 

< d (.Q+~, ti+l) we have 
for which 1 ZJ;+~ f < 

S (ai, hit ti) - [m$h, IS (Aizi + bi (ui), 4~4, ti+l) + Ri (ui)l (1.13) 

If the inequality J ZJ;+~ 1 >‘d (ei+l, &) is fulfilled, then analogously to what we did 
before (relation (1.10). we pick out a one-parameter family of the worst measurement 
outcomes. From (1.8), (1.12) we have 

YiSl = ";+I - $+I = dfe~, b) Y;+~ 1 y,l+, 1-l = d&l, h+l) Aat I &Y+ I-" (1.14) 
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I. e, , the vector &+I is one and the same for the various measurement outcomes. From 
(1.8), in accordance with (1. ll), (1.12), for the vector zi we obtain 

zi+l = ‘i+l ’ + av;,, = -Jizi + bi (Ui) + MY+ (1.15) 

where the parameter p takes the values (see (1.9)) 

1 P 1 G “/z (1 - d (ei+l, ti+l,) 1 A,y, l-l), p = CL - l/2 (1 - d (ei+l, ti+J 1 4% 1-l 
(1.16) 

In the new variables (1.10) has the form 

S(zi, yi,ti) = um~;.maxp fStZi+~, &+I, 4+d + Ri WI 
i 1 

(1.17) 

where Zi+l* Yi+l are taken from (1.14) and (1.15) respectively, and the parameter @ 
varies within the limits (1.16). For t = t.~+% = T the function S is determined by 
the relation 

8 (z~+~, y~+~, T) = ma Xp RN+1. (xN.& xN+l = ZNil + f&N+17 1 P 1 g l/2 (1.18) 

By using the initial condition (1.18) and the recurrence relations (1.1’7) or (1.13). dep- 
ending on whether or not the measurement is effective (i. e., on whether or not the in- 

equality I Y~+I I > d @ifI, ti+l) is fulfilled), we can compute the function S (Zi, 
yi, ti) successively for the instants tf (i = N,N - 1, . . . . 1, 0) and obtain, in 

passing, the values of the control guaranteeing the value (1.4) to functional (X.3). 

2, Continuous syetem, dftcrete ob8erv&tfons. We are given the system 

x’=A(t)~:+b(u,t), te[t,,T], b,sEP, u(t)~U,cl:E’” (2.1) 

Here ut is a compactum for all t E [to, Tf, A (t) is an n X n matrix depending 
on t. On the trajectories of system (2.1) the following functional is defined: 

T 

J = .c fo (~7 t) dt -I- RT C-e), XT -= J: (T) (2.2) 
1” 

Here, 1, and RT are continuous functions. The set B, of possible initial states x (to) E 
E BO, which, in particular. may be a segment, is known. At specified instants t, < 

< t, < ..- < tx < t N+I =T the system’s state is updated by means of measurements. 
Analogous to what was presented in Sect, 1, we can describe the classes (D k), The 
control on the interval fth, d;i+t) is chosen after the meas~ements at the instant tk. 

The problem of obtaining a minimal guaranteed value of functional (8.2) reduces to 
the problem in Sect. 1. 

Let US show this. Let X (t, Z) be the Cauchy matsix of the system 5’ = il (t) x [4]. 
We replace system (2.1) by the equivalent discrete system 

fk+1 

xk+l = x ctk+l, k t ) xk + J’ x (tk+~, ‘t) b (% (r), z) dz (2.3) 
tk 

.rrJ E BOY xk = x ttk) (k = cl,*,. . . , N) 

Here UA (t) are functions given on the interval itk, t&1) with values in ut. Functional 
(‘2.2) is reduced to form (1.2) by the substitution 

fk+l 

f$k (Uk) = j fo (uk (z), %) dz, Rh’+l = RT 

k 
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The Bellman function is defined analogously. It satisfies relations (1.4) (1.6) or (1.13) 

(1.17). (1.18). 

3. Bxrmplea. 1. Consider the scalar system 

=k+l =zk+bpk, \u,&<P, b,>O (k=0,1,...>N), IL>0 (3.1) 

At the initial instant the value z,, is given with the error a, < z,, < a,.The measurem- 

ent function d (e, tk) = dk, d, > 0 (k = 0, I, . . . . N _t 1) is known and, moreover, d, = 
= a2 - al. The functional to be minimized has the form J c= RN+t (x~+r) = 1 z,,,+~ 1. 
The following problems, for example, are continuous analogs of (3. I): 

1) Zl’ = b (f) 24, 2) II’ = .i?, 21’ = u 

IuI<<EL, toft<T, 1=)21(T))-min 

where the coordinate xr. is measured. System (2) reduces to form (1) by the substitution 
E (t) = tl (t) + (T - t) z2 (t); here the functional to be minimized still has the same 
form because g (T) = zl (T). 

Returning to system (3.1), we can at once write down the solution of Eq. (1.13): 

yh = d, (k = 0, 1, . . . . N + 1) under the assumption that 1 I/k+, 1 > dk+l~ i.e. Ad, = 

- 'k+l - 
d, < 0 (k r O, 1, . . . . X). This assumption signifies that the measurement 

accuracy increases with time, and all measurements are effective. Equation (1.15) 
giving the motion of the center of the segment of indeterminacy, is written, after the 

change Bk=(Ad,,/tl,a) L‘,~ in the form 

‘k+t = Jk + bkUI\- +Adkvk-, Iuh- 1 <P, 1 Vk 1 <l/z (k = 0, 1,. . . , N) 

For the Bellman function we have, in accordance with (1.18), the initial condition 

s (“jv+t* tnr+t) = 1 ‘,V+li + ‘bdN+l 

With the aid of (1.17) we compute the value of the Bellman function at the instant tN 

s (: ,,” tS) = miulLy max,,v I z y -j- 6, IC,~ + M,vv, / f si~ds,l 

/ u*y I < P, I v.\- I < llz (3.2) 

To be specific let us assume that the quantity Ii bill i_ ‘/.A A& decreases as i grows, 
and moreover Ei > 0 for i -5 IH and li < 0 for i > m, where 0 < m < .Y. The compu- 
tation of the maximum in (3.2) yields the following value uy; 

/‘ iv == - I,‘2 sgn z,\-, I z.,- 1 + 0; z’.~ = + I/Z, I z4 ) = (1 (3.3) 

For what is to follow we remark that analogous formulas for the “control” v,~ are obtai- 

ned also at all the other instants rk. 
The Bellman function and the control ‘r,v at the instant t.v are 

.\:(z.~\., t,,\)~lz,~l(--,~\.+$-‘/~d.~., u.y = 2fl v., 

Using (1.16) repeatedly, we can obtain 

s tzh., rk. = 1 zk [ + ‘I2 d, - p i b,, uk = 2prh. (k = m-i- 1, r)L + 2, . W 
i:z’h’ 

For the instant i,. where I, > U the following values are obtained: 

s (:m, LJ=l: m j + l/J”iln - p $ bi, urn = 2porn for 1 ztn \ 2; im 

i=m 
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N 

s (“*, t,) = lfz d,+l - p 2 bi, urn = 2~,b-,1 (I zrn I - l/2 Mm) for I 2, I < L 

i==m+1 

At the remaining instants tic (k < m - 1)we obtain 
N m 

i -- 

i=k i=k 

Uk = 3pvk, s (‘k’ tkJ = N m (3.4) 

‘/2d,+l-- 2 bi for z,!<r, ‘i 
i=m+1 i=k 

In the formulas presented, z:,~ is determined by formulas (3.3) with the subscript N re- m 

placed by k. In case 1 Zk 1 < 2 li the control u k is determined ambiguously; only one 

of the possible values has belTkpresented in (3.4). As we see, in the region between the 
polygonal line 12kl = 1, + . . . + l,, Is < m and the interval [to, tm+i] the Bellman furte- 
tion is constant and is given by the lower formula in (3.4). In the general case when the 

quantity Ii changes sign several times, there may exist several such regions of constancy 
of the function, with their own values of the constant. 

2. Let the system be described, as before, by Eq. (3.1) with the same measurements, 
the same informational conditions, and the same functional to be minimized as in 

Example 1. We impose an integral constraint on the control resource 
N 

k=o 

In order to apply the proposed procedure to this problem we introduce an additional 
phase coordinate qh? subjecting it to the equation 

qk+l = qk - 1 uk 1 (k=O, 1.. ,N) (3.5) 

We take it also that I uk 1 < qkor c/k+] > 0 (k = 0, 1, . . . . K). Then, from (3.5) it 
follows that N 

i-k 

t.e., qR is the control resource remaining. The equation for the coordinate Zh has the 
previous form and together with (3.5) gives a second-order system 

‘k+l = zk + bkuk + AdkVk, 1 ‘,i 1 d c/h_* 1 l’,j I f ‘ii 

‘/h.+l = 9h. - I Uk I (k = 0, 1, , N) (3.6) 

The dependency of the sets ,JJ, (uh E Lk) on the phase coordinates was not assumed 

in the derivation of (1.17). However, it is not difficult to obtain, by tracing the deri- 

vation of (1.17). that the Bellman function S (z h, qk, tk) for problem (3.6) satisfies an 
analogous equation. The latter is occasioned by the fact that the coordinate 4k defining 
the constraint on the control is known (can be measured) precisely. We derive, omitting 

details, the solution of this equation under the additional condition bk+l fbk (k = 0, 1, 
. ..) N - 1) signifying that the effectiveness of the control does not increase with time. 

This solution has the form 
S(z,, qk’ tk) = max {@, jkk, fk k+l, . fkN} (k = 0, 1, I N) (3.7) 

b 
fkn = -? (1 -k / - O,q,- gkn)’ gk, = T 

‘k 

Adi (n = k, k + 1 , , . ,“) 
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Solution (3.7) can be further written in the following form: 
N 

5’ tzk’ qk. $.) = 

I 

0 for <,, < pk = -f& 2 “li 
i=k T 

f kn for P,&i<r$<P,,(n=k+i, k+&...,N) 

fkk for El, > P.\I = ‘12 Ad, 

51, = 1 ‘k 1 - b,q,, P, = (b, - b,+J-’ @,qi,, -- &+lg,;n+l) (n = k + I, . , N - 1) 

The values of Uk, uk, supplying the minimax are given by the relations 

‘k = - ‘12 sgn zk, 1 iii I# 0; ok = _f ‘/a, ( “k 1 = 0 

Uk = 2”h.‘/k? if 4, > ‘12 Ad, (3.8) 
uk = Us* z 2vkbi1 (1 zk 1 - ‘/l Ad,), if I’k < 41, 4 ‘12 Ad, (k = 0, 1, . . , N) 

For th < pk the optimal control is determined ambiguously; for example, we can take 
Uk = uk*.’ The synthesis (3.8) drives the center of the indeterminacy segment to zero 

at the initial step and keeps it equal to zero until the control resource is exhausted. If, 
however, the resource does not permit ‘k to vanish, then the whole supply is consumed 
at the very first step. We note two special cases of (3.7). If the condition bk z b (k = 

== 0, 1, . . . . N), iS fulfilled, then fkk = fkk+l = . . . = faN = ilhl - bqk - ‘h (&+j- 

- dk), which simplifies the solution. However, under the assumption that the measure- 

ments are precise, i.e., dk =z U (k -7 0, 1, . . . . N + I), from (3.7). (3.8) we obtain the 

obvious unambiguous solution of the problem 

s @k, qk? tk) = max {O, /kk’ /k+i’ . . . ? fkN} = max (0, fkk) = max Iov 1 ‘C 1 - bkqk} 

uk = - sgn Zkqk’ if Ek >O; uk = - Zkbi’, if FI, 60 

4. Continuous Bystem, continuou, observ&tfona, We can show that 
a formal passing to the limit in the relations in Sect. 1 as At = Inaxk {tk+l - tk} -+ 

t 0 permits us to obtain corresponding equations for the case of a continuous observa- 
tion. Let us take the interval between observations to be equal and let us set tit1 - 

- ri >= At == (Z’ - t) (N + I)-‘. w e replace the index i by the argument t = 
= t, + iht, and the index i + 1 by the argument t + At. Passing to the limit as 

At -+ 0 means that the observation instants are made more frequent. In the limit the 
observation is continuous. Consequently, the classes (0,) should be described for each 
instant t E It,, 1’1. 

We write Eq. (2.1) in the form 

z (t + At) = z (t) + AtA (t) 5 (t) + Atb (u (t), t) + 0 (At”) (4.1) 

In the relations of Sect. 1 we should replace the matrix Ai by E + AtA (t), where 
E is the unit matrix. For simplicity we take it that for any At the inequality 

I Y;+~ 1 = 1 AiYi I > d (ei+l, ti+d (4.2) 

is satisfied at each step, signifying, according to Sect. 1, that the measurements are 
always effective. Then, from relations (1.12), (1.14) follows ei+r = yi+i 1 yi+lIml for 
all i. By replacing indices by arguments in the equality just obtained and in the last 
equality of (1.12). we obtain e (t) = y 1 y I-l, e (t f At) = (9 -k AtAy) 1 Y i- 
+ At& I-‘, where the argument t has been dropped in the right-hand sides. By 
passing to the limit as At --t 0, we have 
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(4.3) 
e’= P (e, t), P (e, t) = A (t)e - (A (t) e, e)e, t E ito, Tl, e (t,) = y, 1 go l-1 

We can remark that system (4.3) describes the variation of the unit vector parallel to 
the solution vector of the system y’ = AI/, Y (&I) = Yo. 

To obtain a continuous analog of condition (4.2) let us ascertain to what the ratio 
d (%+I, ti+~) 1 A d/t I” tends as At + 0. Note that after the indices have been re- 

placed by arguments, from (1.14) follows d (e (t), t) = 1 y (t) 1 for all t. Further, 
with due regard to (4.3) we have 

d(e(r+AO,r+At) = 1 
1 y (t) + AM PI y(t) I 

- -&- D (e, t) At f 0 (At*) (4.4) 

D (e, t) = d (e, t) (A (t) e, e) - g - (P 6% % $) 
By dd / ae we have denoted the gradient of the scalar function d (e, t) along the 

vector argument e. In the limit inequality (4.2) becomes the inequality 

D (e, 0 > 0 (4.5) 

In (1.14). by passing to the continuous argument t and by letting At -+ 0 with due 
regard to (4.4) we obtain 

Y’ = AY - De, Y (to) = Y,, e = Y I Y I-’ (4.6) 

From (1.14) it follows also that the solution of Eq, (4.6) has the form y (t) = d (e (t), 

t) E (t) I E Q)l -l, where the vector E (t) is the solution of the homogeneous equation 

E’ = A (t) E, E (to) = yo. This fact is easily verified also by a direct substitution into 
system (4.6). Consequently, the solution of Eq, (4.3) has the form e (t) = % (t) 1% 

0) I-‘. 
The interval (1.16) of variation of fl shrinks to a point as At + 0 (see (4.4)). There- 

fore we introduce another parameter p by the relation p = pAt. The parameter p 
is determined by the position of the segment I (zkl, SS’) on the segment 1 (zgl’, ~ks’) 

(Fig. 2), while the parameter p corresponds to the velocity of the motion of one seg - 
ment relative to the other (the variation rate of the measurement result). Having divided 
both sides in (1.16) by At and passing to the limit as At --t 0, analogously to (4.4) we 
obtain the interval of variation of parameter p 

I p I < ‘I$ (6 t) / I Y I (4.7) 

After the change of variables p = VD I y I-’ Eq. (1.14) becomes the equation 

z’ = AZ + b (u, t) + VD (e, t) e, z (to) = zo, u (t) E Ut, I v (t) I < ‘1, (4.8) 

Equations (4.3) and (4.6) are solved independently of u and u, therefore, we can 
reckon that (4.8) yields a differential game with the phase vector 2. where the controls 
of the antagonists are the vector u and the scalar V, and the payoff is the functional 

(2.2). Knowing the vectors z (t) and y (t), we can assert that 5 (t) = 2 (t) -t- yy (t), 

where I y I C ‘ir, t E ito, Tl. Thus, the problem of controlling a continuous system 
under an imprecise knowledge of the phase vector is reduced in the case being conside- 

red to the differential game (4.8) (2.2) where we can apply the methods for solving 
differential games D. 51. 
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We consider game problems in which the payoff is some function of the terminal 

state of a conflict-controlled system. We state sufficient conditions for the exis- 

tence of optimal minimax and maximin strategies of the players. We show that 

optimal strategies exist if the corresponding Bellman equation has a solution. 

We consider the question of the existence of optimal strategies both in the class 

of deterministic as well as in the class of mixed strategies. The reasoning pres- 

ented is based on the results in [l, 21. The questions considered border on the 

investigations presented in [ 2 - 51. 

1, Let the motion of a conflict-controlled system be described by the nonlinear 

equation dx’dt = f (t, s, II, zl) (1.1) 

Here x is the n-dimensional phase vector, ~1 and c are the controls of the first and 

second players, respectively, ,i (1, J. u, 1’) is a continuous vector-valued function sat- 

isfying a Lipschitz condition in x‘. The realizations II [II and l’ [f] of the controls. ~1 , 
and u are constrained by the conditions l! I!\ Er I-’ (t) and v ItI E Q (f), where 1’ ([) 

and Q (t) are closed. bounded and convex sets in the corresponding vector spaces, var- 

ying continuously with 1. We assume that the right-hand side of system (1.1) satisfies 

the condition 

The payoff is the quantity 1~’ (X IS])? defined at the final instant t = 6 by the position 

2 [ti] realized. The function U; (x) is assumed continuous. Thus, we are considering 

a game with a fixed final instant t = 6. The first player strives to minimize the quan- 

tity W (2 Ifi]) under the most adverse behavior of the second player. The second player’s 

problem is to ensure a completion of the game with the largest possible value of the 

payoff. 
We emphasize that the controls b and 1’ should be formed by a feedback rule in order 


